

Coconut: An IDE Plugin for Developing Privacy-Friendly Apps

Tianshi Li Yuvraj Agarwal Jason I. Hong

Carnegie Mellon University
Carnegie Mellon University
Carnegie Mellon University

Only 8.97% developer survey respondents have worked with a privacy team

According to a survey study we recently conducted with developers randomly sampled on Google Play (N=234)

How can we support (independent) Android developers to adopt good privacy practices?

Limitation in prior work

- Privacy research for developers is still at an early stage.
- Heavily focused on developers' attitudes/knowledge/habits that cause security issues, while very little in-depth examination about different aspects of privacy issues.
- A lot of study on the high-level privacy/security attitudes, while they offer little help for designing developer tools to address these issues.
- Very little work explored building developer tools for privacy.

Semi-structured interview (N=9)

- Part 1 (Study **high-level challenges in understanding**): Asked general questions about their app development experience, privacy training background, and perceptions about privacy.
- Part 2 (Study concrete challenges during programming): Asked about recent apps (up to 3 apps) they had developed.
 - Specifically, we asked whether certain categories of personal data were acquired from these apps, and, if so, how and why.
 - We tested the apps before or during the interview to check their statements.

Challenge 1: Partial understanding of privacy

- Obtain user consent before collection (P1)
- Avoid using PII (P1)
- minimizing data usage (P2, P6, P7, P8)
- encrypting or obfuscating data before egress (P4, P8).

Challenge 2: Inaccurate understanding of app behaviors

- Insufficient understanding of how some API works, especially ad libs
- Varying data practices in different versions
- Developers come and go, but data practices are not well-documented

Challenge 3: Lacking privacy knowledge

 None of them heard about the "Best practices for unique identifiers" which is listed in the official Android documentation

Challenge 4: Collecting unneeded data when lacking constraints

- Requested multiple types of data controlled by the same permission (P3, P6)
- Requested sensitive data for multiple purposes, while only explained partial reasons to users (P5)

Privacy challenges faced by developers

Partial understanding of privacy

Inaccurate understanding of app behaviors

Lacking privacy knowledge

Collecting unneeded data when lacking constraints

Designing privacy annotations to help address the four challenges

- Privacy annotations are custom Java annotations that are designed to:
 - guide developers to think through privacy risks
 - document privacy practices (especially hard-to-analyze factors such as purposes)
 - suggest better privacy practices
 - make privacy practices more transparent

Privacy annotations corresponding to info flows

```
@LocationAnnotation(
        purpose = {LocationPurpose.provide_location_based_content},
        purposeDescription = {"Get local weather info"},
        visibility = {Visibility.WHILE_IN_USE},
        frequency = {"One-time access"},
        dataType = {LocationDataType.COARSE_GRAINED_LATITUDE_LONGITUDE}
Location location = locationManager.getLastKnownLocation(
        LocationManager.NETWORK_PROVIDER);
```

```
@LocationAnnotation(
        purpose = {LocationPurpose.provide_location_based_content},
        purposeDescription = {"Get local weather info"},
        visibility = {Visibility.WHILE_IN_USE},
        frequency = {"One-time access"},
        dataType = {LocationDataType.COARSE_GRAINED_LATITUDE_LONGITUDE}
@NetworkAnnotation(
        retentionTime = "Not stored",
        destination = {"OpenWeather API server"},
        purposeDescription = {"Update current local weather"},
        encryptedInTransmission = true)
JsonObjectRequest request = new JsonObjectRequest(Request.Method.GET,
        url: currentWeatherURL + locationString + "test",
```


Source

Coconut enforces and facilitates developers to provide privacy annotations

```
questQueue = new RequestQueue(cache, network);
questQueue.start();
ationManager locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);
(locationManager != null) {
if (ActivityCompat.checkSelfPermission( context: this, Manifest.permission.ACCESS_FINE_LOCATION) != Packag
     return;
 locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, minTime: 0, minDistance: 0,
             LocationAnnotation annotation is required. more... (第F1)
             public void onLocationChanged(Location location) {
             @Override
             public void onStatusChanged(String provider, int status, Bundle extras) {
             @Override
             public void onProviderEnabled(String provider) {
             @Override
             public void onProviderDisabled(String provider) {
```

Privacy lint: nudge towards best privacy practices

Privacy overview panel: auto-generated, interactive privacy documentation

Evaluating Coconut via a lab study

- 18 developers, between-subjects design
- Warm-up task: Obtain the current lat-long location data and display it on the screen
- Main task (the UI and weather API were preimplemented):
 - Obtain the current lat-long location data to update the current weather.
 - Store the location data locally for future analysis with a unique identifier.
 - Implement a banner ad using Google Admob.

A screenshot of the weather app in the main task

Lab evaluation result highlights

- Result 1: Privacy annotations were perceived useful and usable
 - Developers perceived high usefulness and low disruptiveness and time spent on the annotating work.
- Result 2: Coconut helped developers write more privacy-preserving code
 - In the control group, only 36.7% of implemented features followed best privacy practices, while 77.8% followed best practices in the Coconut group.
- Result 3: Coconut helped developers better understand the app's behavior
 - The correct rate of the factual questions in the post-study survey were 66.7% and 88.1% respectively for the control group and the Coconut group
- Result 4: Coconut helped developers write better privacy policies

Summary of our contributions

- Four challenges for handling privacy: incomplete understanding of privacy, inaccurate understanding of app behavior, lacking privacy knowledge, lacking constraints.
- We present Coconut, an IDE plugin that helps Android developers handle privacy.
- Annotations provide a low-cost and natural method to help document privacy practices and convey immediate privacy feedback while programming
- Check out our website: https://coconut-ide.github.io
 - We release a pre-compiled version and the source code of the plugin and annotation library, and an example Android app so you can try it out yourself!

Thanks!

Tianshi Li (tianshil@cs.cmu.edu) https://tianshili.me https://coconut-ide.github.io

